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Abstract Accurate prediction of the phenotypical per-

formance of untested single-cross hybrids allows for a

faster genetic progress of the breeding pool at a reduced

cost. We propose a prediction method based on e-insensi-

tive support vector machine regression (e-SVR). A brief

overview of the theoretical background of this fairly new

technique and the use of specific kernel functions based on

commonly applied genetic similarity measures for domi-

nant and co-dominant markers are presented. These

different marker types can be integrated into a single

regression model by means of simple kernel operations.

Field trial data from the grain maize breeding programme

of the private company RAGT R2n are used to assess the

predictive capabilities of the proposed methodology. Pre-

diction accuracies are compared to those of one of today’s

best performing prediction methods based on best linear

unbiased prediction. Results on our data indicate that both

methods match each other’s prediction accuracies for

several combinations of marker types and traits. The e-SVR

framework, however, allows for a greater flexibility in

combining different kinds of predictor variables.

Introduction

For several agronomically important plant species like

maize (Zea mays L.), hybrid varieties constitute a consid-

erable part, if not all, of the commercial market. Maize

breeding programmes typically have a continuously

evolving breeding pool at their disposal which is loosely

divided into several complementary heterotic groups. New

inbred lines are created by subsequent inbreeding of an

initial cross or the use of doubled haploids. During their

selection, these candidate lines are crossed with tester lines

from a complementary heterotic group and hybrid perfor-

mance is evaluated in multi-location field trials. Bernardo

(1994, 1995, 1996a, b) uses linear mixed modelling to

predict the performance of such an untested cross based on

field trial results of related hybrids and marker data. This

approach performs well considering the upper limit in

prediction accuracy that is imposed by the heritability of

each tested trait. Charcosset et al. (1998) show that this

prediction method is superior when hybrids originate from

crosses between unrelated inbred lines, which is most

likely the case in commercial breeding programmes.

Unfortunately, correlations between predicted and

observed SCA values are too low to allow for an effective

selection towards high heterosis hybrids (Bernardo 1995).

Maenhout et al. (2007) demonstrate how e-insensitive

support vector machine regression (e-SVR) can be used to

screen for genetically superior inbred lines based on their
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molecular marker profiles. They conclude that prior to field

testing e-SVR allows to predict the GCA component of an

inbred line with adequate precision. Unfortunately this

does not hold for the SCA component for which an accu-

rate prediction method is still out of reach.

Based on these promising results as a screening tool, this

paper explores the use of e-SVR to directly predict the

phenotypical performance of untested hybrids. The pre-

sented technique uses linear mixed modelling to correct

unbalanced phenotypical measurements for nuisance

parameters like trial, location and block effects. The cor-

rected phenotypical values of all hybrids are used as a

training set for constructing an e-insensitive regression

model in which the molecular fingerprints of each hybrid

serve as predictor variables. These models can subse-

quently be used to predict the phenotypical values of

unknown hybrids and inbred lines. The advantage of e-
SVR lies in the use of kernel functions that allow to explore

nonlinear models for hybrid prediction.

Materials and methods

Data description

Phenotypical data

The phenotypical data used in this study originate from

field trials that were organised as part of the grain maize

breeding programme of RAGT R2n between 1998 and

2005. One hundred and five inbred lines from the Iowa stiff

stalk synthetic (ISSS) heterotic group and 93 lines from the

complementary Iodent group were selected on the basis of

three criteria:

1. The theoretical half diallel between the 105 lines of the

ISSS group and the 93 lines of the Iodent group should

be as complete as possible.

2. All genetic effects should be estimable if estimation

were to be done using a linear model.

3. The maximum prediction error variance (PEV) of a

pairwise contrast between the random genetic compo-

nents of hybrids in the selection should be minimal.

These three criteria together ensure that the selected inbred

lines produce the maximum number of training samples

with low PEV. The resulting data set contains 2,371

hybrids which were tested in 1,287 multi-location field

trials. There are on average 34.4 hybrids tested in each of

these multi-location field trials. In every location a trial is

laid out as a randomised complete block design, but 67% of

them include only one block, leading to an average of 1.42

replications per location. To ensure estimability, connec-

tivity and a good model fit, the phenotypical measurements

of an additional 34,140 hybrids are added to the data set as

check varieties. The data set contains two levels of

unbalancedness. Firstly, the 2,371 created hybrids only

represent 24.3% of all possible crosses in the theoretical

half-diallel. Secondly, each tested hybrid or check variety

is on average present in 1.2 connected multi-location field

trials demonstrating the severe unbalancedness at this

secondary level. For each included plot in the data set,

grain yield (q/ha at 15% moisture), grain moisture content

and days until flowering were recorded. The coefficient of

coancestry hP
ii0 between two inbred lines i and i0 of the same

heterotic group was calculated by tabular analysis from

pedigree information with corrections for inbreeding and

backcrossing (Emik and Terrill 1949).

Marker data

The 198 selected inbred lines were fingerprinted using co-

dominant SSR and dominant AFLP markers. The 101

genotyped SSR markers are evenly distributed over the

maize genome according to a proprietary linkage map of

the company RAGT R2n. Due to problems identifying

some SSR alleles (null alleles) only 75 markers have

complete profiles over all selected inbred lines. In this

study only information of these complete SSR loci was

used. About 2.6% of all SSR locus/inbred line combina-

tions was heterozygous, preventing an exact deduction of

the hybrid genotype when these lines are used as parents.

The average polymorphism information content (PIC) of

the 75 SSR loci over 198 selected inbred lines is 0.55.

The molecular coefficient of coancestry hS
ii0 between two

inbred lines i and i0 of the same heterotic group was

calculated from SSR data as described by Bernardo

(1993),

hS
ii0 ¼

Pii0 � 1
2
ð �Pi: þ �Pi0:Þ

1� 1
2
ð �Pi: þ �Pi0:Þ

; ð1Þ

where Pii0 is the average allele identity over all SSR marker

loci between inbred i and i0 defined as

Pii0 ¼
1

4s

Xs

k¼1

Iðikm
; i0km
Þ þ Iðikm

; i0kp
Þ þ Iðikp

; i0km
Þ þ Iðikp

; i0kp
Þ;

where ikm
represents the maternal allele of inbred line i for

locus k, while ikp
represents the paternal allele. Iðikm

; i0km
Þ

returns one if the maternal allele on locus k of individual i

is equal to the maternal allele of that same locus of indi-

vidual i0 and 0 otherwise. �Pi: represents the average allele

identity between inbred line i and all inbred lines of the

complementary heterotic group. This formulation allows

for incomplete homozygosity of inbred lines. �Pi: represents
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the average allele identity between inbred line i and all

lines of its complementary heterotic group.

AFLP data is generated according to the protocol of Vos

et al. (1995) using 11 PstI–MseI (P12/M47, P13/M47, P12/

M59, P13/M48, P12/M61, P13/M49, P12/M62, P13/M59,

P12/M50, P12/M48, P12/M49) and four EcoRI–MseI pri-

mer combinations (E38/M51, E39/M55, E39/M59, E46/

M59) (Vuylsteke et al. 1999). The EcoRI and MseI primers

each had three selective nucleotides, while there were only

two for the PstI primers. There was preference for the PstI–

MseI primer combinations as the resulting markers are

likely to be more evenly distributed over the maize genome

than EcoRI–MseI markers (Vuylsteke et al. 1999; Casti-

glioni et al. 1999). These 15 primer combinations produced

569 polymorphic bands for the 198 selected inbred lines.

To calculate the molecular coefficient of coancestry hii0
A

between two inbred lines i and i0 of the same heterotic

group based on dominant AFLP marker data, Eq. (1) was

used but the proportion of shared AFLP alleles Pii0 was

calculated according to the Jaccard similarity measure as

Pii0 ¼
aii0

aii0 þ bii0 þ cii0
; ð2Þ

where aii0 represents the number of bands common to both

individuals i and i0 while bii0 represents the number of

bands unique to i and cii0 those unique to i0.

Data analysis

Linear mixed model

As the data suffers from severe unbalancedness, a linear

mixed model is the recommended approach for correcting

the phenotypical measurements for nuisance factors like

trial, location and block effects. The used model is quite

similar to that proposed by Bernardo (1994) but the actual

plot measurements are used instead of averages over

locations and blocks:

y ¼ lþ Xttþ Xllþ Xbbþ Zccþ ZIaI þ ZOaO þ Zddþ e:

ð3Þ

y represents a vector containing the trait responses for each

plot in the data set and l represents the global phenotypical

mean. t is a vector containing the fixed multi-location trial

effects, l contains the fixed effects for each location nested

within a multi-location trial and b represents the fixed

block effects, nested within each location. Vector c con-

tains the random genotypical effects for all checks. aI and

aO are vectors containing GCA effects for the inbred lines

belonging to the ISSS and Iodent heterotic groups,

respectively, while d contains the SCA effects for each of

the 2,371 hybrids. e contains a random residual error for

each plot in the data set. The coincidence matrices Xt, Xl,

Xb, Zc, ZI, ZO and Zd link each entry in the y vector with

the appropriate effect. The levels of the nested trial, loca-

tion and block effects are sometimes confounded in which

case the higher level effect is set to 0. No explicit GxE

terms or heterogeneous residual variances were fitted into

Eq. (3). The expected improvements of these more elabo-

rate models could not be verified because of computational

limitations caused by the size of the data set and its severe

unbalancedness. Furthermore, these models are not handled

by the benchmark method described by Bernardo (1994,

1995, 1996a, b) and would therefore exclude an objective

comparison.

The covariance matrix G for the random effects in the

model can be represented as

G ¼

Ir2
c 0 0 0 0

0 AIr2
I 0 0 0

0 0 AOr2
O 0 0

0 0 0 Dr2
d 0

0 0 0 0 Ir2
r

2
66664

3
77775

ð4Þ

The matrices AI and AO model the covariance between

inbred lines of the ISSS and Iodent heterotic group,

respectively. Usually the covariance between two hybrids

hij and hi0j0, where lines i and i0 belong to the ISSS group

and lines j and j0 belong to the Iodent group, is modelled as

(Stuber and Cockerham 1966)

Covðhij; hi0j0 Þ ¼ hii0r
2
I þ hjj0r

2
O þ hii0hjj0r

2
d; ð5Þ

where hii0 is the coefficient of coancestry between two

inbred lines i and i0 of the ISSS heterotic group and hjj0

between two inbred lines j and j0 of the Iodent group. The

coefficient of coancestry can be calculated based on ped-

igree information (hP), but also from SSR (hS) or AFLP

data (hA). The three components of Eq. (5) allow to

construct the matrices AI, AO and D using the described

coefficients of coancestry. These alternative formulations

are compared by means of the restricted log-likelihood of

the model given the data, keeping the fixed effects struc-

ture constant. The covariance matrix for the checks is

assumed to be an identity matrix. If pedigree or marker

data were available for these checks, including this

information in the covariance matrix G would improve the

model fit as proposed by Bernardo (1995). The variance

parameters rc
2, rI

2, rO
2 , rd

2 and rr
2 are estimated through

REML optimisation by means of the average information

algorithm as implemented in the software tool ASReml

(Gilmour et al. 2002).

The phenotypical value of each hybrid is estimated as

the average of its measurements in the data set, albeit with

correction for trial, location and block effects. The vector
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of corrected phenotypical values is therefore obtained as

(Bernardo 1994, 1995, 1996a, b)

ŷc ¼ ðZ0dZdÞ�1Z0dðy� l� Xtt� Xll� XbbÞ: ð6Þ

The elements of ŷc are used as a training set for building

the e-SVR prediction model. Apart from training an e-SVR

model we also implemented the prediction system

proposed by Bernardo (1994, 1995, 1996a, b). A

validation subset ŷcv of size l0 is predicted from the

remaining entries ŷct as

ŷcv ¼ CvtV
�1
t ŷct: ð7Þ

Cvt is an l0 · (l–l0) matrix containing the covariances

between validation and training hybrids. Vt is the variance–

covariance matrix of the l–l0 training hybrids. Elements of

Cvt and non-diagonal elements of Vt are computed using

Eq. (5). The ith diagonal element of Vt is equal to

r2
I þ r2

O þ r2
d þ

r2
r

ni
; where ni is the number of records of the

ith hybrid in the training set. The prediction accuracy of

Bernardo’s method is established using a leave-one-out

cross-validation. This means that each of the 2,371 hybrids

are individually predicted using a vector ŷct containing the

corrected phenotypical effects of the 2,370 remaining

hybrids. The algorithm was implemented in C++ using the

matrix routines provided in the GNU Scientific Library

(Galassi et al. 1998).

e-insensitive support vector machine regression

Support vector machines (SVM) are a set of unsupervised

learning methods developed by Vapnik (1995) for classi-

fication and regression. A good tutorial on SVM

classification is given by Burges (1998), while Smola and

Schölkopf (2004) present the underlying ideas of support

vector machines for regression (SVR). In an SVR setting

we represent each training sample i as a couple consisting

of a vector xi 2 X and a scalar yi 2 R: If we want to learn

the phenotypical performance of a hybrid maize plant

based on the molecular fingerprints of its two parental

inbred lines, we could consider X as a binary space of n

dimensions where n is the total number of possible alleles

that make up a molecular fingerprint. For each hybrid i, the

entries in the vector xi are set to one if one of the homo-

zygous parents carries the corresponding allele or –1

otherwise. yi then equals the phenotypical response of

hybrid i for the trait under study.

In e-insensitive support vector machine regression (e-
SVR) the goal is to find a function f(x) that deviates at most

e from the target value y for each training sample 0 \ i £ l

in the data set. Initially we restrict the possible set of

solutions to linear functions like

f ðxÞ ¼ hw; xi þ b where w 2 R
n and b 2 R;

but sometimes several linear solutions to this problem

might exist. We therefore include the additional constraint

that the norm of the weight vector w should be as small as

possible. This last condition generates simple (flat)

solutions which avoid overfitting the training data.

Figure 1 depicts a regression problem for which no linear

solution exists for the given width e of the insensitivity

tube. Each training sample i is therefore allowed to have a

slack variable fi = yi – f(xi) – e in case f(xi) underestimates

yi or fi
* = f(xi) – yi – e in case of overestimation. These

training errors should obviously be minimised together

with the Euclidean norm of the weight vector w which

allows for the formulation

Minimise
1

2
kwk2 þ C

Xl

i¼1

ðfi þ f�i Þ

subject to

yi � hw; xii � b � eþ fi

hw; xii þ b� yi � eþ f�i
fi; f

�
i � 0

8
><

>:

ð8Þ

The constant C [ 0 determines the trade-off between the

flatness of f and the extent to which deviations larger than e
are tolerated. The parameters C and e are problem-

dependent but can for example be determined by means

of a simple grid search in combination with some cross-

validation routine or more elaborate strategies like gradient

descent methods (Chapelle et al. 2002). The inequality

constraints are included into the minimisation problem

through the use of Lagrange multipliers which allows for

the primal formulation:

*ζ

0

ζ +ε

−ε

Fig. 1 A one-dimensional linear function f(x) where all but two

training samples lie within the e-SVR insensitivity tube of width 2e
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L :¼ 1

2
kwk2 þ C

Xl

i¼1

ðfi þ f�i Þ �
Xl

i¼1

ðgifi þ g�i f
�
i Þ

�
Xl

i¼1

aiðeþ fi � yi þ hw; xii þ bÞ

�
Xl

i¼1

a�i ðeþ f�i þ yi � hw; xii � bÞ ð9Þ

The partial derivatives of L with respect to the unknown

function parameters b, w, fi and fi
* should become 0 at the

optimal point:

obL ¼
Xl

i¼1

ðai � a�i Þ ¼ 0 ð10Þ

owL ¼ w�
Xl

i¼1

ðai � a�i Þxi ¼ 0 ð11Þ

o
fð�Þi

L ¼ C � að�Þi � gð�Þi ¼ 0 ð12Þ

Substituting Eqs. (10)–(12) into Eq. (9) allows for the dual

formulation

maximise

� 1

2

Xl

i; j¼1

ðai � a�i Þðaj � a�j Þhxi; xji

� e
Xl

i¼1

ðai þ a�i Þ þ
Xl

i¼1

yiðai � a�i Þ

8
>>>>><

>>>>>:

subject to
Xl

i¼1

ðai � a�i Þ ¼ 0 and ai; a
�
i 2 ½0;C�; ð13Þ

and allows us to rewrite f as:

f ðxÞ ¼
Xl

i¼1

ðai � a�i Þhxi; xi þ b: ð14Þ

Eq. (14) shows that f is specified as a linear combination of

all training samples xi expressed as dot products. The

Karush-Kuhn-Tucker (KKT) conditions state that at the

solution of the maximisation problem of Eq. (13) the

product between the dual variables ai
(*) and their corre-

sponding inequality constraints of Eq. (8) becomes 0. This

basically means that only when |f(xi)–yi| ‡ e the coefficients

ai or ai
* can be non-zero. All samples inside the e-tube are

therefore not used in the formulation of f. All other training

samples with nonvanishing coefficients ai
(*) are called the

support vectors, hence the name support vector machines.

If we preprocess the training samples xi by a map

/ : X ! F into a higher dimensional space named the

feature space F and solve the linear regression there, we

can state Eq. (14) as

f ðxÞ ¼
Xl

i¼1

ðai � a�i Þh/ðxiÞ;/ðxÞi þ b: ð15Þ

Depending on the map /, this approach effectively allows

us to create non-linear functions f. When predicting y for an

unknown example x using the in feature space learned

linear function f, Eq. (15) obliges us to apply the mapping

/ to this new case as well as to all training samples and

subsequently make the dot product between them. This

approach is often not computationally feasible, so we use

instead a symmetric kernel function k(xi,x) = h/(xi),/(x) i
that gives us directly the dot product in feature space. This

shortcut allows us to reformulate Eq. (15) as

f ðxÞ ¼
Xl

i¼1

ðai � a�i Þkðxi; xÞ þ b: ð16Þ

Not all symmetric functions over X � X are kernels that

can be used in an SVM. Since a kernel function k is related

to an inner product it has to satisfy some conditions that

arise naturally from the definition of an inner product and

are given by Mercer’s theorem: the kernel function has to

be positive semi-definite (PSD). A commonly used kernel

function is the Gaussian kernel defined as

kðx; zÞ ¼ expð�ckx� zk2Þ; ð17Þ

where c is a kernel specific parameter which allows to find

a linear function in an infinitely large feature space

(Shawe-Taylor and Cristianini 2004). Most all-round ker-

nels like the Gaussian or polynomial kernel require the

knowledge of one or several additional kernel parameters.

The use of context specific kernel functions, however, can

avoid the computationally exhausting grid searches needed

to identify these parameter values that allow a minimal

generalisation error.

Dot products in feature space are in fact measures of

similarity between cases, so the use of PSD genetic similarity

measures as kernel functions is a valid option. The Jaccard

similarity measure of Eq. (2) is commonly used when geno-

typing is based on dominant molecular markers like AFLP.

As this similarity measure is PSD (Gower and Legendre

1986), it can be used as a kernel function in an e-SVR.

A useful PSD genetic similarity measure for co-domi-

nant markers is the complement of the Modified Rogers’

distance (Wright 1978; Goodman and Stuber 1983) or

MRD defined as

sW
kl ¼ 1� dW

kl with dW
kl ¼

1ffiffiffiffiffi
2s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xs

i¼1

Xni

j¼1

ðpk
ij � pl

ijÞ
2

vuut ;

where s is the number of genotyped loci, ni is the number

of alleles for locus i and pij
k , pij

l represent the allele

Theor Appl Genet (2007) 115:1003–1013 1007

123



frequency for the jth allele of locus i for individual k and l,

respectively. As demonstrated in Melchinger (1999) there

is a linear relationship between DH, the panmictic-mid-

parent heterosis and (dkl
W)2 under the assumption of

biallelism and absence of epistasis. Therefore, this simi-

larity measure should prove itself useful when used as a

kernel function for hybrid prediction.

The weighted sum of two PSD matrices produces a PSD

matrix as long as the weights are positive. Computing the

weighted sum of different kernel functions therefore cre-

ates a new kernel function. Returning to the concept of a

feature space this operation has the effect of augmenting

the dimensions of the feature space related to the first

kernel, with the dimensions of the feature space related to

the second kernel (Shawe-Taylor and Cristianini 2004).

When we apply this to the Jaccard and MRD kernel

functions we have a way to combine SSR and AFLP data

into a single regression function. We call the resulting

function the Jaccard–MRD kernel.

Cross-validation and grid search

To assess the generalisation error of an e-SVR model we

rely on a leave-one-out cross-validation procedure. It is,

however, infeasible to redo the REML optimisation for

each reduced training set as removing records of a ran-

domly chosen hybrid for cross-validation would cause

connectivity issues in the linear mixed model. These

problems include inestimable fixed nuisance parameters

and biased estimations of variance components. It is

therefore assumed that differences between the estimators

of the fixed nuisance parameters, calculated using only the

data from the training hybrids, and those estimated using

all data, are negligible. The reported results therefore do

not account for the loss of prediction accuracy in the linear

mixed model caused by data reduction.

For each hybrid in the data set, a different e-SVR model

is trained using the corrected phenotypical values ðŷcÞ of

the remaining hybrids as a training set. When ŷc of a trait is

used as predictand, the square root of the broad-sense

heritability of that trait upper bounds the correlation

between the true and predicted phenotypical values as

explained by Bernardo (1996a). These broad-sense herita-

bility estimates should not be compared to the usual

narrow-sense heritability estimates calculated on an entry-

mean basis.

Building an e-regression model from training values

requires values for e, C and c when using the Gaussian

kernel. Finetuning these variables can greatly improve the

generalisation capacity of the prediction system. To find

the optimal values a grid search was performed as descri-

bed by Hsu et al. (2003). During this grid search all

combinations of e, C and if necessary c were tested for each

cross-validation routine, where e and c ranged from 2–15 to

24 and C ranged from 2–5 to 215. The software libSVM

(Chang and Lin 2001), which allows easy integration of

non-standard kernel functions, was used for all regressions.

Calculations were performed on a Linux cluster containing

eight nodes, each having two Dual-Core Intel1 Xeon1

CPU 3.00 GHz processors, 1 Gb of RAM and running a

2.6.5 kernel.

When reporting prediction accuracies, several artificial

measures could be used to compare models and techniques.

A commonly used measure of prediction accuracy is the

standard error defined as the root of the summed squared

differences between the actual and the predicted values

divided by the number of predictions. Although this mea-

sure allows for easy comparison between different models

and data sets, it is dependent on the unit of measurement of

the response variable. Comparing accuracies of similar

techniques or models on traits measured in a different unit

or scale is therefore not possible. Interpreting standard

errors is also quite hard when the reader has no reference

for comparing the obtained results. Another commonly

used measure is the Pearson correlation q between the

actual and the predicted value. This correlation, expressed

as a number between 0 and 1, is however dependent on the

variance of the predictor variable and resulting predictions.

The larger this variance, the larger the obtained correlation

will be. This means for example that the correlation

between the actual and predicted value for a regression on

yield will be larger in natural populations compared to

advanced breeding pools with lower yield variance. This

property makes it hard to compare published results

between prediction methods when different data sets are

used. As both criteria seem to cover each others’ weak-

nesses we compare the different prediction systems by

calculating the Pearson correlation as well as the standard

error.

Results

Linear mixed model fit

The average coefficient of coancestry calculated from

pedigree data differs substantially from the averages cal-

culated from SSR or AFLP data as can be seen from

Table 1. Despite the apparent differences between the

mean values for hP, hA and hS, the Spearman rank corre-

lations between these estimators are moderately high. The

AFLP-based coefficients seem to represent an intermediate

value between the high SSR- and low pedigree-based

coefficients. As can be seen from Table 2, the observed

correlations between the two marker-based coefficients of
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coancestry are higher than the correlations between a

marker-based and a pedigree-based coefficient for both

heterotic groups. However, AFLP-based estimators are

closer to the pedigree-based coefficients than the SSR-

based alternatives. Apparently all calculated correlations

within the Iodent group are greater than those of the ISSS

group.

We use the log-likelihood resulting from the REML

optimisation process to determine the best fitting covari-

ance structure for Eq. (4). Table 3 gives an overview of

these log-likelihoods for the linear mixed model of Eq. (3)

where the matrices AI, AO and D are either considered

diagonal or constructed according to Eq. (5) using pedi-

gree, SSR or AFLP data for the calculation of the

coefficients of coancestry. The models with a non-diagonal

covariance matrix for the SCA values always have a lower

log-likelihood than their diagonal counterparts. This means

that the covariance between SCA values should be mod-

elled as 0 as it seems to fit better than the product of both

coefficients of coancestry as in Eq. (5).

The model with AFLP-based A matrices and an identity

D matrix results in the highest log-likelihood for all traits

under study. A model with SSR-based A matrices and a

diagonal D matrix gives the second highest log-likelihood

for yield, but performs worse than the pedigree-based

equivalent for moisture content and days until flowering.

These results indicate that the AFLP-based coefficient of

coancestry approximates better the actual relatedness

between hybrids compared to the pedigree-based and even

the SSR-based coefficient for this data set. All subsequent

regressions and predictions are therefore based on the

results of the linear mixed models with AFLP-based A and

diagonal D matrices in Eq. (4).

e-SVR

When testing new hybrid prediction algorithms, the main

interest lies in the estimation of the total genetic value of

untested hybrids. We use the corrected phenotypical values

in vector ŷc from Eq. (6) as a training set for building a

regression model. By means of the standard leave-one-out

cross-validation strategy the predictive capabilities of the

different kernels are compared to each other. Table 4 gives

an overview of the obtained correlations and standard

deviations for the different combinations of trait, marker

type and kernel functions. The last column represents the

leave-one-out cross-validation accuracy of the prediction

by means of Eq. (7) using marker-based coefficients of

coancestry to model Cvt and Vt.

When the molecular information is restricted to micro

satellite data, the e-SVR based models, albeit with a min-

imal difference, provide better prediction accuracies than

Bernardo’s method. Comparing the three kernel functions,

we notice that the two nonlinear kernel functions always

perform slightly better than the linear one. This observation

demonstrates the advantage of performing a linear regres-

sion in a kernel induced feature space. The similarity based

MRD kernel function performs just as good as the Gaussian

kernel but does not require the finetuning of an additional

kernel parameter so using MRD to build an optimised

prediction model takes far less computation time. Predic-

tion accuracies of e-SVR and Bernardo’s method are also

very similar when the molecular fingerprints of the inbred

lines are restricted to AFLP markers. For yield and days

until flowering e-SVR is slightly superior, while Bernardo’s

method is preferred for moisture content. Again the non-

linear kernels perform better than their linear counterpart

Table 1 Minimum, maximum and average coancestries based on

pedigree (hP), AFLP (hA) and SSR (hS) for the two heterotic groups

used in this study

hP hA hS

Iodent

Average 0.27 0.38 0.45

Minimun 0 0.04 0.01

Maximum 0.88 0.99 0.98

ISSS

Average 0.17 0.23 0.31

Minimum 0 0 0

Maximum 0.78 0.94 0.95

Table 2 Spearman rank correlations between coefficients of coan-

cestry based on pedigree (hP), AFLP (hA) and SSR (hS) data for the

Iodent and ISSS heterotic groups

q Iodent ISSS

hP $ hA 0.79 0.69

hP $ hS 0.75 0.67

hA $ hS 0.90 0.77

Table 3 Restricted log-likelihoods for the linear mixed model of Eq.

(3) with fixed nuisance factors but different formulations for G. The

covariance matrices for GCA and SCA effects are either diagonal,

based on pedigree, SSR or AFLP data

A D Yield Moisture (%) Flowering

Diagonal Diagonal –588609 –201915 –158515

Pedigree Diagonal –588590 –201872 –158498

Pedigree Pedigree –588659 –202056 –158571

SSR Diagonal –588585 –201879 –158504

SSR SSR –588681 –202142 –158600

AFLP Diagonal –588583 –201855 –158487

AFLP AFLP –588639 –201961 –158537
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and the parameter free Jaccard-based kernel function pro-

vides a valid alternative to the Gaussian kernel.

When we need to decide between SSR- and AFLP-based

features, we notice that for each trait under study, the

AFLP markers provide equal or slightly better prediction

accuracies than the SSR markers. Examining the restricted

log-likelihood of the linear mixed model revealed the same

preference for the dominant AFLP marker data. In either

case the differences are minimal to say the least so these

conclusions should not be generalised to other data sets.

For yield and days until flowering combining the infor-

mation of SSR and AFLP markers provides the highest

prediction accuracy over all applied methods but the gain

in precision is minimal as both sets of markers seem to be

equally informative in this case.

The maximum obtained Pearson correlations using an

e-SVR based model are 0.58, 0.84 and 0.63 for yield,

moisture content and days until flowering, respectively,

while these are 0.57, 0.84 and 0.62 for Bernardo’s

method. We can therefore conclude that e-SVR predic-

tions are at least as accurate as the corresponding analyses

using Bernardo’s method. The maximum correlations,

calculated as the square root of the trait’s broad sense

heritability, are 0.66, 0.87 and 0.68 for yield, moisture

content and days until flowering, respectively. It should be

clear that both frameworks predict close to the theoretical

maximum for moisture content and that there is still some

room for improvement in days until flowering and espe-

cially yield prediction. The e-SVR framework should

allow for these traits to tighten the remaining gap between

the theoretical and obtained correlations for example by

means of feature selection methods. The gradient descent

based R2W2 technique described by Weston et al. (2000)

and the greedy recursive feature elimination (RFE)

described by Guyon et al. (2002) are examples of such

methods that allow for the identification of markers that

have little or no contribution to the prediction model.

Besides the advantage of identifying key markers which

could be used as a starting point for more detailed asso-

ciation studies, it is to be expected that removing the

useless features shall improve the obtained prediction

accuracies; however, further study is required to ascertain

this point. Another possible road to improvement is to

design specific kernel functions for hybrid prediction. This

allows to encode prior knowledge of the learning task into

the feature space in which the regression takes place. The

advantages of engineering a case-specific kernel function

are exemplified by Zien et al. (2000) who designed a

kernel for the identification of translation initiation sites in

DNA code which resulted in a significantly improved

recognition performance compared to the standard kernel

functions.

Discussion

Bernardo’s method is currently one of the best known

methods for the prediction of the phenotypical performance

of maize hybrids originating from crosses between unre-

lated lines, as is the case for most of today’s commercial

hybrids. We evaluated the use of e-insensitive support

vector machine regression, as an alternative to Bernardo’s

method, on a real maize breeding data set from the private

breeding company RAGT R2n. Maenhout et al. (2007)

applied e-SVR as a screening tool for the genetic compo-

nents of newly created inbred lines. The idea is now to train

the e-SVR algorithm to directly predict the phenotypical

values of maize hybrids based on the molecular marker

scores of both parental inbred lines and compare the

obtained prediction accuracies with those of Bernardo’s

method. The field trial data resulting from a commercial

breeding programme are typically very unbalanced and

therefore linear mixed modelling is used to adjust the

phenotypical measures for location, trial and block effects.

For each hybrid, the average of the corrected plot mea-

surements for yield, grain moisture contents and days until

flowering are used as predictands while the AFLP- and

Table 4 Standard leave-one-out prediction accuracies, expressed as

Pearson correlations and standard errors (between brackets), on cor-

rected phenotypical values for yield, moisture content and days until

flowering

Linear Gaussian MRD Bernardo

SSR

Yield 0.56 (6.8) 0.58 (6.67) 0.58 (6.67) 0.57 (6.72)

Moisture content 0.83 (1.19) 0.84 (1.16) 0.84 (1.14) 0.84 (1.16)

Flowering 0.62 (1.18) 0.63 (1.16) 0.63 (1.16) 0.62 (1.18)

Linear Gaussian Jaccard Bernardo

AFLP

Yield 0.56 (6.78) 0.58 (6.64) 0.57 (6.75) 0.57 (6.72)

Moisture content 0.83 (1.18) 0.84 (1.14) 0.84 (1.16) 0.84 (1.13)

Flowering 0.61 (1.18) 0.63 (1.16) 0.62 (1.18) 0.62 (1.17)

Linear Gaussian Jaccard–MRD Bernardo

AFLP + SSR

Yield 0.56 (6.8) 0.58 (6.63) 0.57 (6.7) –

Moisture content 0.83 (1.18) 0.84 (1.14) 0.84 (1.14) –

Flowering 0.61 (1.19) 0.63 (1.15) 0.63 (1.16) –

The results are presented according to the type of features (SSR,

AFLP or both) and the type of kernel function used during the

analysis. The last column represents the accuracy of the predictions

obtained with Bernardo’s method (Bernardo 1994, 1995, 1996a, b).

The prediction method with the highest correlation and lowest stan-

dard error is typesetted in bold for each trait
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SSR-based molecular fingerprints of the parental inbred

lines serve as predictor variables.

We calculated the coefficients of coancestry based on

pedigree, SSR and AFLP data for all pairwise combina-

tions of inbred lines within each of the two heterotic

groups. The Spearman rank correlations between the

obtained similarity measures are moderately high but the

marker-based coefficients generally indicate a higher level

of relatedness between the individual lines. This discrep-

ancy might be explained by the unequal parental

contributions that can occur after several generations of

inbreeding during line development. A standard pedigree

analysis is not able to detect these shifts and assumes equal

contributions from both parents. Another possible cause of

bias is the assumption of unrelated ancestor individuals

which is often impossible to verify. As the described

deviations are higher for the ISSS lines we can assume that

these departures from theoretical assumptions are more

pronounced within this heterotic group.

The resulting log-likelihood of the REML procedure for

estimating the variance components of the linear mixed

model allows to identify the best fitting covariance struc-

ture. For the data set at hand, the likelihood of the model

with a diagonal covariance matrix D for the SCA effects is

higher than the pedigree-, AFLP- and SSR-based alterna-

tives. This result has also been observed in other data sets

(Piepho H.P., 2006 personal communication at the session

‘‘BLUP in Plant Breeding’’, XIII EUCARPIA Biometrics

in Plant Breeding Section Meeting, Zagreb, Croatia) and

demonstrates that the base assumptions underlying the

derivation of Eq. (5) in Stuber and Cockerham (1966), in

particular the absence of linkage disequilibrium and dif-

ferent effects of the same alleles in the two populations, do

not hold in an advanced breeding pool. Moreover Eq. (5) is

a simplification, leaving out all interaction terms besides

the dominance effect and therefore assuming that epistasis

is negligible. We also noticed that using products of

coefficients of coancestry as entries in D does not guar-

antee a positive definite covariance matrix for the SCA

values which is counterintuitive and can lead to conver-

gence problems of the REML algorithm.

The AFLP-based coefficient of coancestry is preferred

when modelling the covariance between the GCA effects

of the parental inbred lines although the likelihood of a

model using SSR-based coancestries is comparable. This

observation exemplifies the superiority of marker-based

coefficients of coancestry over theoretical pedigree-based

values. Marker similarities are corrected for the difference

between identity in state and identity by descent by means

of the average marker similarity of each inbred line with

all inbred lines of the complementary heterotic group. As

indicated by Bernardo et al. (1996) this approach assumes

homogeneous allele frequencies among these heterotic

groups. As this was generally not the case for the Iodent

and ISSS group in this study, the presented coefficients of

coancestry are biased. It is to be expected that the model

fit will improve when the marker-based coefficients of

coancestry are derived from estimators of parental con-

tribution as described in Bernardo et al. (2000).

Unfortunately, the elaborate pedigree of the 198 selected

inbred lines does not allow the fingerprinting of all

ancestral individuals to calculate these parental contribu-

tions from SSR or AFLP similarities. This will generally

be the case when working with historically evolved het-

erotic groups.

By using the most likely linear mixed model we can

correct the phenotypical values for each hybrid for nui-

sance factors and use these estimators as a training set for

the construction of an e-SVR model. Correlations between

real and predicted phenotypical values by means of a leave-

one-out cross-validation show that the non-linear kernels

perform better than their linear counterpart for every

combination of trait and marker type. This demonstrates

the advantage of performing a linear regression in a kernel

induced feature space. These non-linear kernels generally

allow to match or slightly improve the accuracy of the

currently best performing prediction method for crosses

between unrelated inbred lines. The training of an e-SVR

model does, however, assume the knowledge of several

parameters like the width e of the insensitivity tube, the

error weighting variable C and possibly one or several

kernel function parameters. These parameters can be op-

timised by a simple grid search in combination with cross-

validation routines but this can become computationally

exhausting when the number of required kernel parameters

is large. Subject-specific kernel functions like the presented

Jaccard measure, MRD and their linear combinations can

avoid the necessity of extra kernel parameters while

allowing similar prediction accuracies. Both the Jaccard

measure and the complement of the modified Rogers’

distance are PSD similarity measures and therefore repre-

sent a dot product in some feature space. In practice, the

requirement of a kernel function to be PSD turns out to be a

very strict assumption. Several references can be found

where a symmetric non-PSD similarity function is used

within the standard SVM framework as a heuristic

approach (Bahlmann et al. 2002; Decoste and Schölkopf

2002; Haasdonk and Keysers 2002). Problems like non-

convexity of the optimisation problem can be handled by

adding an additional term to the objective function of Eq.

(14) as described in Fan et al. (2005). This approach

guarantees that the optimisation process converges to a

stationary point but only in the case of a PSD kernel

function this point is the unique optimal value. This

information leads one to suspect that several other simi-

larity measures, PSD or not, and their linear combinations
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could increase the prediction accuracy of e-SVR models

but further study is obviously needed to ascertain this.

Another advantage of the e-SVR methodology is the easy

integration of different types of molecular and even

descriptive morphological data as features. As there is no

straightforward way to incorporate all this information into

the covariance matrices of Bernardo’s method, e-SVR

allows for a greater flexibility when the prediction system

has to be implemented into an existing breeding pro-

gramme. Easy feature selection heuristics like the greedy

recursive feature elimination (Guyon et al. 2002) should

allow for the identification of specific molecular markers

and possibly parental morphological properties that are

crucial for the construction of the prediction model. When

evaluating new inbred lines one can make the trade-off

between the cost of collecting a certain feature and the

increase in prediction accuracy that this feature represents.

To conclude we can state that, although further com-

parisons using other data sets are necessary, the presented

e-SVR models can generally compete with Bernardo’s

method. Parameter optimisation, feature selection algo-

rithms and problem-specific kernel functions are several

promising aspects of this recent technique which need

further investigation in the context of hybrid prediction.
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